By Topic

A novel surface-oxidized barrier-SiN cell technology to improve endurance and read-disturb characteristics for gigabit NAND flash memories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
A. Goda ; Adv. Memory Device Group, Toshiba Corp., Yokohama, Japan ; W. Moriyama ; H. Hazama ; H. Iizuka
more authors

This paper describes a novel surface-oxidized barrier-SiN cell technology to effect a tenfold improvement in endurance and read disturb characteristics. In conventional memory cells, degradation of tunnel oxides due to barrier-SiN films for Self-Aligned Contact (SAC) limits the scaling of memory cells. The proposed technology overcomes this problem by an additional oxidation process subsequent to barrier-SiN deposition to reduce hydrogen in both SiN film and tunnel oxide. 0.18 /spl mu/m-rule NAND cells fabricated by the proposed technology demonstrate a tenfold improvement in allowable program/erase cycles and read disturb lifetime without any deterioration of other cell properties.

Published in:

Electron Devices Meeting, 2000. IEDM '00. Technical Digest. International

Date of Conference:

10-13 Dec. 2000