By Topic

Composite programs: hierarchical construction, circularity, and deadlocks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
W. A. Muhanna ; Fac. of Manage. Inf. Syst., Ohio State Univ., Columbus, OH, USA

A graph-oriented, nonprocedural development environment in which composite programs are constructed by coupling a collection of existing component programs, the interfaces of which are defined by a fixed number of input ports and output ports, is discussed. It is shown that when the coupling graph is cyclic there is the possibility of a deadlock. A system that permits hierarchical construction of programs while testing, using a simple algebraic procedure, the resulting composite programs for communication deadlocks is presented. A decomposition-based approach to cycle enumeration is described. A formal graph-theoretic model of communication behavior for a class of atomic programs is presented. The model is then used to derive necessary and sufficient conditions for a deadlock to arise in a cycle. Techniques for dealing with deadly cycles (once identified) and improving the efficiency of their execution, once the cycles have been resolved, are described

Published in:

IEEE Transactions on Software Engineering  (Volume:17 ,  Issue: 4 )