By Topic

Theoretical determination of the temporal and spatial structure of α-particle induced electron-hole pair generation in silicon

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
P. Oldiges ; SRDC, IBM Corp., Hopewell Junction, NY, USA ; R. Dennard ; D. Heidel ; B. Klaasen
more authors

Physics-based modeling of the impact ionization process in silicon was performed to determine the time constants and radial distribution of electron-hole pairs after an α-particle strike. The radial distribution exhibited a Gaussian shape with a radius of approximately 50 nm. The impact ionization process took place over a period of less than approximately 500 fsec, implying time constants for use in semiconductor device simulations on the order of a few hundred fsec, a value much smaller than has been used in earlier device simulation work. Device simulations then show that the implication of using these shorter time constants is the creation of a higher concentration of electron-hole pairs at shorter times that cause stronger shunting effects for α-particle strikes between source and drain of MOS transistors

Published in:

IEEE Transactions on Nuclear Science  (Volume:47 ,  Issue: 6 )