By Topic

Origins of total-dose response variability in linear bipolar microcircuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
H. J. Barnaby ; Dept. of Electr. Eng. & Comput. Sci., Vanderbilt Univ., Nashville, TN, USA ; C. R. Cirba ; R. D. Schrimpf ; D. M. Fleetwood
more authors

LM111 voltage comparators exhibit a wide range of total-dose-induced degradation. Simulations show this variability may be a natural consequence of the low base doping of the substrate PNP (SPNP) input transistors. Low base doping increases the SPNPs collector to base breakdown voltage, current gain, and sensitivity to small fluctuations in the radiation-induced oxide defect densities. The build-up of oxide trapped charge (NOT) and interface traps (NIT) is shown to be a function of pre-irradiation bakes. Experimental data indicate that, despite its structural similarities to the LM111, irradiated input transistors of the LM124 operational amplifier do not exhibit the same sensitivity to variations in pre-irradiation thermal cycles. Further disparities in LM111 and LM124 responses may result from a difference in the oxide defect build-up in the two part types. Variations in processing, packaging, and circuit effects are suggested as potential explanations

Published in:

IEEE Transactions on Nuclear Science  (Volume:47 ,  Issue: 6 )