By Topic

Frame-synchronous noise compensation for hands-free speech recognition in car environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chien, J.-T. ; Dept. of Comput. Sci. & Inf. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Lin, M.-S.

It has become increasingly important to develop hands-free speech recognition techniques for the human-computer interface in car environments. However, severe car noise degrades the speech recognition performance substantially. To compensate the performance loss, it is necessary to adapt the original speech hidden Markov models (HMMs) to meet changing car environments. A novel frame-synchronous adaptation mechanism for in-car speech recognition is presented. This mechanism is intended to perform unsupervised model adaptation efficiently on a frame-by-frame basis instead of a conventional adaptation algorithm relying on batch adaptation data and supervision information. The proposed adaptation scheme is performed during frame likelihood calculation where an optimal equalisation factor is first computed to equalise the model mean vector and the input frame vector. This equalisation factor then serves as a reference index to retrieve an additional bias vector for model mean adaptation. As a result, a rapid and flexible algorithm is exploited to establish a new robust likelihood measure. In experiments on hands-free in-car speech recognition with the microphone far from the talker, this framework is found to be effective in terms of recognition rate and computational cost under various driving speeds

Published in:

Vision, Image and Signal Processing, IEE Proceedings -  (Volume:147 ,  Issue: 6 )