By Topic

An integrated circuit/architecture approach to reducing leakage in deep-submicron high-performance I-caches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yang, S.-H. ; Dept. of Electr. & Comput. Eng., Carnegie Inst. of Washington Obs., Pasadena, CA, USA ; Powell, M.D. ; Falsafi, B. ; Roy, K.
more authors

Deep-submicron CMOS designs maintain high transistor switching speeds by scaling down the supply voltage and proportionately, reducing the transistor threshold voltage. Lowering the threshold voltage increases leakage energy dissipation due to subthreshold leakage current even when the transistor is for switching. Estimates suggest a five-fold increase in leakage energy in every future generation. In modern microarchirectures, much of the leakage energy is dissipated in large on-chip cache memory structures with high transistor densities. While cache utilization varies both within and across applications, modern cache designs are fixed in size resulting in transistor leakage inefficiencies. This paper explores an integrated architectural and circuit level approach to reducing leakage energy in instruction caches (i-caches). At the architectural level, we propose the Dynamically Resizable i-cache (DRI i-cache), a novel i-cache design that dynamically resizes and adapts to an application's required size. At the circuit-level, we use gated-Vdd, a mechanism that effectively turns of the supply voltage to, and eliminates leakage in, the SRAM cells in a DRI i-cache's unused sections. Architectural and circuit-level simulation results indicate that a DRI i-cache successfully and robust exploits the cache size variability both within and across applications. Compared to a conventional i-cache using an aggressively-scaled threshold voltage a 64K DRI i-cache reduces on average both the leakage energy-delay product and cache size 62%, with less than 4% impact on execution time

Published in:

High-Performance Computer Architecture, 2001. HPCA. The Seventh International Symposium on

Date of Conference: