By Topic

Long wavelength vertical-cavity semiconductor optical amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
E. S. Bjorlin ; Dept. of Electr. & Comput. Eng., California Univ., Santa Barbara, CA, USA ; B. Riou ; P. Abraham ; J. Piprek
more authors

This paper overviews the properties and possible applications of long wavelength vertical-cavity semiconductor optical amplifiers (VCSOAs). A VCSOA operating in the 1.3-μm wavelength region is presented. The device was fabricated using wafer bonding; it was optically pumped and operated in reflection mode. The reflectivity of the VCSOA top mirror was varied in the characterization of the device. Results are presented for 13 and 12 top mirror periods. By reducing the top mirror reflectivity, the amplifier gain, optical bandwidth, and saturation output power were simultaneously improved. For the case of 12 top mirror periods, rye demonstrate 13-dB fiber-to-fiber gain, 0.6 nm (100 GHz) optical bandwidth, a saturation output power of -3.5 dBm and a noise figure of 8.3 dB. The switching properties of the VCSOA are also briefly investigated. By modulating the pump laser, we have obtained a 46-dB extinction ratio in the output power, with the maximum output power corresponding to 7-dB fiber-to-fiber gain. All results are for continuous wave operation at room temperature

Published in:

IEEE Journal of Quantum Electronics  (Volume:37 ,  Issue: 2 )