Cart (Loading....) | Create Account
Close category search window
 

Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Ranaud, C.C. ; Optoelectron. Res. Centre, Southampton Univ., UK ; Offerhaus, H.L. ; J.A.Alvarez-Chavez ; Nilsson, J.
more authors

We theoretically and experimentally analyze Q-switched cladding pumped ytterbium-doped fiber lasers designed for high pulse energies. We compare the extractable energy from two high-energy fiber designs: (1) single- or few-moded low-NA large mode area (LMA) fibers and (2) large-core multimode fibers, which may incorporate a fiber taper for brightness enhancement. Our results show that the pulse energy is proportional to the effective core area and, therefore, LMA fibers and multimode fibers of comparable core size give comparable results. However, the energy storage in multimode fibers is mostly limited by strong losses due to amplified spontaneous emission (ASE) or even spurious lasing between pulses. The ASE power increases with the number of modes in a fiber. Furthermore, spurious feedback is more difficult to suppress with a higher NA, and Rayleigh back-scattering increases with higher NA, too. These effects are smaller in low-NA LMA fibers, allowing for somewhat higher energy storage. For the LMA fibers, we found that facet damage was a more severe restriction than ASE losses or spurious lasing. With a modified laser cavity, we could avoid facet damage in the LMA fiber, and reached output pulse energies as high as 2.3 mJ, limited by ASE. Theoretical estimates suggest that output pulse energies around 10 mJ are feasible with a larger core fiber, while maintaining a good beam quality

Published in:

Quantum Electronics, IEEE Journal of  (Volume:37 ,  Issue: 2 )

Date of Publication:

Feb 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.