By Topic

Automatic genre identification for content-based video categorization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ba Tu Truong ; Dept. of Comput. Sci., Curtin Univ. of Technol., Perth, WA ; Dorai, C.

Presents a set of computational features originating from our study of editing effects, motion, and color used in videos, for the task of automatic video categorization. These features besides representing human understanding of typical attributes of different video genres, are also inspired by the techniques and rules used by many directors to endow specific characteristics to a genre-program which lead to certain emotional impact on viewers. We propose new features whilst also employing traditionally used ones for classification. This research, goes beyond the existing work with a systematic analysis of trends exhibited by each of our features in genres such as cartoons, commercials, music, news, and sports, and it enables an understanding of the similarities, dissimilarities, and also likely confusion between genres. Classification results from our experiments on several hours of video establish the usefulness of this feature set. We also explore the issue of video clip duration required to achieve reliable genre identification and demonstrate its impact on classification accuracy

Published in:

Pattern Recognition, 2000. Proceedings. 15th International Conference on  (Volume:4 )

Date of Conference: