By Topic

Fabrication of gate-all-around transistors using metal induced lateral crystallization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chan, Victor W.C. ; Dept. of Electr. & Electron. Eng., Hong Kong Univ. of Sci. & Technol., China ; Chan, Philip C.H.

Gate-all-around transistor (GAT) is demonstrated. The device can be fabricated on either a bulk silicon wafer or on the top of any device layers. The fabrication process used a new technique called metal-induced-lateral-crystallization (MILC) to recrystallize amorphous silicon to form large silicon grains in the active area. Using this technique, the transistor performance is comparable to a SOI MOSFET. Compared with the single-gate thin film transistor (SGT) and solid phase crystallization (SPC) devices, the MILC GAT has lower subthreshold slope, lower threshold voltage, higher transconductance and nearly double drive current, The impact of short channel length was investigated.

Published in:

Electron Device Letters, IEEE  (Volume:22 ,  Issue: 2 )