By Topic

Small-signal operation of semiconductor devices including self-heating, with application to thermal characterization and instability analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Rinaldi, N. ; Dipartimento di Ingegneria Elettronica, Naples Univ., Italy

A rigorous mathematical treatment of dynamic self-heating in semiconductor devices is presented. Two formulations for the admittance parameters are given. The thermal behavior of the device is referred to device temperature in the first formulation, and to ambient temperature in the second. Contrary to previous work, nonlinear thermal effects are included. An analytical model for the thermal resistance is derived which confirms the relevance of these effects. Applications of the above results to device modeling and thermal characterization are studied in detail by means of numerical simulations. Possible sources of inaccuracies are evidenced. Finally, it is shown that the differential analysis of thermal feedback provides a general and rigorous means to determine the conditions for the onset of thermally-induced instabilities

Published in:

Electron Devices, IEEE Transactions on  (Volume:48 ,  Issue: 2 )