Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Placement of the processors of a hypercube

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lai, Ten-Hwang ; Dept. of Comput. & Inf. Sci., Ohio State Univ., columbus, OH, USA ; Sprague, A.P.

The authors formalize the problem of minimizing the length of the longest interprocessor wire as the problem of embedding the processors of a hypercube onto a rectangular mesh, so as to minimize the length of longest wire. Where neighboring nodes of the mesh are taken as being at unit distance from one another, and where wires are constrained to be laid out as horizontal and vertical wires, the length of the wire joining nodes u and v of the mesh equals the graph-theoretic distance between u and v. The problem of minimizing delays due to interprocessor communication is then modeled as the problem of embedding the vertices of a hypercube onto the nodes of a mesh, so as to minimize dilation. Two embeddings which achieve dilations that (for large n) are within 26% of the lower bound for square meshes and within 12% for meshes with aspect ratio 2 are presented

Published in:

Computers, IEEE Transactions on  (Volume:40 ,  Issue: 6 )