By Topic

Design considerations and loss analysis of zero-voltage switching boost converter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
V. T. Valtchev ; Dept. of Electron., Tech. Univ. of Vama, Bulgaria ; A. van den Bossche ; J. Melkebeek ; D. D. Yudov

A novel zero-voltage switching (ZVS) boost converter for medium- and high-power applications is proposed. Compared to conventional hard switching boost converters, the switching losses are decreased by a factor of 3 to 4. A design procedure is proposed, based on the minimisation of the total losses in the switch. It is shown that variations of operating frequency, turn-off current and voltage rise time do not affect the control algorithm or the design procedure, even for a wide range of loading conditions and input voltage. A 3 kW prototype using IGBTs is simulated (PSPICE) and developed. The efficiency obtained is more than 90% for load values higher than 20% of full load, and attains 95% for full load. Advantages of the circuit include zero-voltage-zero-current turn-on and zero-voltage turn-off for a wide range of line voltage and load; switching conditions do not depend on the load. The reliable control strategy makes the proposed ZVS boost converter attractive for medium-power applications where IGBTs are used predominantly

Published in:

IEE Proceedings - Electric Power Applications  (Volume:148 ,  Issue: 1 )