By Topic

Peer group image enhancement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kenney, C. ; Dept. of Electr. & Comput. Eng., California Univ., Santa Barbara, CA, USA ; Deng, Y. ; Manjunath, B.S. ; Hewer, G.

Peer group image processing identifies a “peer group” for each pixel and then replaces the pixel intensity with the average over the peer group. Two parameters provide direct control over which image features are selectively enhanced: area (number of pixels in the feature) and window diameter (window size needed to enclose the feature). A discussion is given of how these parameters determine which features in the image are smoothed or preserved. We show that the Fisher discriminant can be used to automatically adjust the peer group averaging (PGA) parameters at each point in the image. This local parameter selection allows smoothing over uniform regions while preserving features like corners and edges. This adaptive procedure extends to multilevel and color forms of PGA. Comparisons are made with a variety of standard filtering techniques and an analysis is given of computational complexity and convergence issues

Published in:

Image Processing, IEEE Transactions on  (Volume:10 ,  Issue: 2 )