By Topic

The digital TV filter and nonlinear denoising

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chan, T.F. ; Dept. of Math., California Univ., Los Angeles, CA, USA ; Osher, S. ; Shen, J.

Motivated by the classical TV (total variation) restoration model, we propose a new nonlinear filter-the digital TV filter for denoising and enhancing digital images, or more generally, data living on graphs. The digital TV filter is a data dependent lowpass filter, capable of denoising data without blurring jumps or edges. In iterations, it solves a global total variational (or L1) optimization problem, which differs from most statistical filters. Applications are given in the denoising of one dimensional (1-D) signals, two-dimensional (2-D) data with irregular structures, gray scale and color images, and nonflat image features such as chromaticity

Published in:

Image Processing, IEEE Transactions on  (Volume:10 ,  Issue: 2 )