By Topic

Quadratic Gabor filters for object detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Weber, D.M. ; Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Casasent, David P.

We present a new class of quadratic filters that are capable of creating spherical, elliptical, hyperbolic and linear decision surfaces which result in better detection and classification capabilities than the linear decision surfaces obtained from correlation filters. Each filter comprises of a number of separately designed linear basis filters. These filters are linearly combined into several macro filters; the output from these macro filters are passed through a magnitude square operation and are then linearly combined using real weights to achieve the quadratic decision surface. For detection, the creation of macro filters (linear combinations of multiple single filters) allows for a substantial computational saving by reducing the number of correlation operations required. In this work, we consider the use of Gabor basis filters; the Gabor filter parameters are separately optimized. The fusion parameters to combine the Gabor filter outputs are optimized using an extended piecewise quadratic neural network (E-PQNN). We demonstrate methods for selecting the number of macro Gabor filters, the filter parameters and the linear and nonlinear combination coefficients. We present preliminary results obtained for an infrared (IR) vehicle detection problem

Published in:

Image Processing, IEEE Transactions on  (Volume:10 ,  Issue: 2 )