By Topic

The attitude control problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wen, J.T.-Y. ; Dept. of Electr., Comput. & Syst. Eng., Rensselaer Polytech. Inst., Troy, NY, USA ; Kreutz-Delgado, K.

A general framework for the analysis of the attitude tracking control problem for a rigid body is presented. A large family of globally stable control laws is obtained by using the globally nonsingular unit quaternion representation in a Lyapunov function candidate whose form is motivated by the consideration of the total energy of the rigid body. The controllers share the common structure of a proportional-derivative feedback plus some feedforward which can be zero (the model-independent case), the Coriolis torque compensation, or an adaptive compensation. These controller structures are compared in terms of the requirement on the a priori model information, guaranteed transient performance, and robustness. The global stability of the Luh-Walker-Paul robot end-effector controller is also analyzed in this framework

Published in:

Automatic Control, IEEE Transactions on  (Volume:36 ,  Issue: 10 )