By Topic

An application of discriminative feature extraction to filter-bank-based speech recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Biem, A. ; ATR Human INf. Processing Res. Lab., Kyoto Univ., Japan ; Katagiri, S. ; McDermott, E. ; Biing-Hwang Juang

A pattern recognizer is usually a modular system which consists of a feature extractor module and a classifier module. Traditionally, these two modules have been designed separately, which may not result in an optimal recognition accuracy. To alleviate this fundamental problem, the authors have developed a design method, named discriminative feature extraction (DFE), that enables one to design the overall recognizer, i.e., both the feature extractor and the classifier, in a manner consistent with the objective of minimizing recognition errors. This paper investigates the application of this method to designing a speech recognizer that consists of a filter-hank feature extractor and a multi-prototype distance classifier. Carefully investigated experiments demonstrate that DFE achieves the design of a better recognizer and provides an innovative recognition-oriented analysis of the filter-bank, as an alternative to conventional analysis based on psychoacoustic expertise or heuristics

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:9 ,  Issue: 2 )