Cart (Loading....) | Create Account
Close category search window
 

Internal charging: a preliminary environmental specification for satellites

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fennell, J.F. ; Space Sci. Dept., Aerosp. Corp., Los Angeles, CA, USA ; Koons, H. ; Chen, M.W. ; Blake, J.B.

Internal charging has been indicated as the cause of many satellite anomalies. In some cases, it has been argued that internal charging has caused satellite system failures. It may be possible to predict the occurrence of an internal charging threat in the future but that does not remove the necessity to know what the environmental threat may be. The existence, for many years now, of energetic electron and internal charging measurements in the inner magnetosphere provides the ability to identify the threat levels and generate internal charging specifications. The specifications must embody the worst-case environments that can be expected from magnetic storms and extreme solar/interplanetary conditions. Internal-charging environment specifications are needed by satellite manufacturers for setting design requirements for their systems. The specifications are also required for defining the worst-case energetic electron flux levels and total fluence levels from events. These are used for electron beam testing to verify that critical systems are immune to internal charging, for performing tests on subsystems, and for use in anomaly investigation programs. Data from the GOES, LANL, and CRRES satellites were used to develop preliminary internal-charging environment specifications for some commonly used orbits such as geosynchronous and Molniya or high earth orbits (HEO), and they are discussed. A specification is also given for a highly elliptical equatorial orbit that is used for lunar-transfer orbital maneuvers. The preliminary environments were used to estimate the shielding required to reduce worst-case electron fluxes to safe levels for these orbits

Published in:

Plasma Science, IEEE Transactions on  (Volume:28 ,  Issue: 6 )

Date of Publication:

Dec 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.