By Topic

From transistors to light emitters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
N. Holonyak ; Electr. Eng. Res. Lab., Illinois Univ., Urbana, IL, USA

The report at the 1962 IRE Solid-State Device Research Conference (July, Durham, NH) of the generation and long-range transmission (and detection) of a recombination-radiation signal from a simple Zn-diffused GaAs p-n junction, a startling report, began the race to construct a semiconductor laser. The visible-spectrum II-V alloy GaAs/sub 1-x/P/sub x/ was in the middle of this activity and was (fall of 1962), with GaAs, a first semiconductor laser, not to mention the first laser in a semiconductor alloy or crystal that could be "tuned" in energy gap (and wavelength) from direct gap to indirect gap. The ternary GaAs/sub 1-x/P/sub x/, the prototype of all present-day III-V alloys used in heterojunction and quantum-well devices, established uniquely the importance of a direct gap for a laser and inevitably for light emitting diodes (LEDs). The events leading to the GaAs/sub 1-x/P/sub x/ laser, as well as, in slightly different form, the first practical LED, are described. The significance of the work of 1962-1963 in launching the semiconductor laser is described, and the reasons why the semiconductor laser (an "ultimate lamp") is predominant over all other forms of lasers.

Published in:

IEEE Journal of Selected Topics in Quantum Electronics  (Volume:6 ,  Issue: 6 )