By Topic

A unified algebraic transformation approach for parallel recursive and adaptive filtering and SVD algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jun Ma ; Dept. of Electr. & Comput. Eng., Minnesota Univ., Minneapolis, MN, USA ; Parhi, K.K. ; Deprettere, E.F.

In this paper, a unified algebraic transformation approach is presented for designing parallel recursive and adaptive digital filters and singular value decomposition (SVD) algorithms. The approach is based on the explorations of some algebraic properties of the target algorithms' representations. Several typical modern digital signal processing examples are presented to illustrate the applications of the technique. They include the cascaded orthogonal recursive digital filter, the Givens rotation-based adaptive inverse QR algorithm for channel equalization, and the QR decomposition-based SVD algorithms. All three examples exhibit similar throughput constraints. There exist long feedback loops in the algorithms' signal flow graph representation, and the critical path is proportional to the size of the problem. Applying the proposed algebraic transformation techniques, parallel architectures are obtained for all three examples. For cascade orthogonal recursive filter, retiming transformation and orthogonal matrix decompositions (or pseudo-commutativity) are applied to obtain parallel filter architectures with critical path of five Givens rotations. For adaptive inverse QR algorithm, the commutativity and associativity of the matrix multiplications are applied to obtain parallel architectures with critical path of either four Givens rotations or three Givens rotations plus two multiply-add operations, whichever turns out to be larger. For SVD algorithms, retiming and associativity of the matrix multiplications are applied to derive parallel architectures with critical path of eight Givens rotations. The critical paths of all parallel architectures are independent of the problem size as compared with being proportional to the problem size in the original sequential algorithms. Parallelism is achieved at the expense of slight increase (or the same for the SVD case) in the algorithms' computational complexity

Published in:

Signal Processing, IEEE Transactions on  (Volume:49 ,  Issue: 2 )