By Topic

Theoretical aspects of radar imaging using stochastic waveforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bell, D.C. ; Dept. of Electr. Eng., Nebraska Univ., Lincoln, NE, USA ; Narayanan, R.M.

In this work, we develop the theory of radar imaging using stochastic waveforms, such as random noise or chaotic signals. Specifically, we consider one-dimensional (1-D) (range profiles) and two-dimensional (2-D) (range-Doppler) radar imaging performed with a random signal radar, in which the transmit signals are assumed to be stationary random processes. We calculate the 1-D and 2-D point-spread functions as the expected value of the radar return. We show that the 2-D point-spread function is spatially invariant; however, the reduction in height and broadening of the mainlobe is small in the case of bandlimited noise. We also derive a formula that is useful in calculating the variance of the radar return under the assumption that the transmit signal is real valued and Gaussian

Published in:

Signal Processing, IEEE Transactions on  (Volume:49 ,  Issue: 2 )