Cart (Loading....) | Create Account
Close category search window
 

Performance analysis of channel-borrowing handoff scheme based on user mobility in CDMA cellular systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dong-Jun Lee ; Dept. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol., Taejon, South Korea ; Dong-Ho Cho

Code-division multiple-access (CDMA) cellular systems use soft handoff. Although the capacity of CDMA systems is interference-limited in nature, channel shortages may occur because soft handoff uses several channels simultaneously. To cope with this problem, we propose an improved handoff method that borrows channels from stationary calls participating in soft handoff and allocates the borrowed channels to handoff requests by moving calls when a channel shortage occurs. Borrowing from stationary calls is possible because these calls do not undergo fast-fading and do not require receiver diversity. The proposed method is designed to avoid increased interference resulting from channel borrowing. The proposed channel-burrowing handoff scheme is analyzed in a situation involving both moving and stationary calls. A comparison is made between the performances of the typical IS-95-based handoff scheme and the proposed scheme. Numerical results show that the proposed scheme is better than the IS-95 scheme in view of the handoff refused probability, the handoff queuing delay, and total interference

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:49 ,  Issue: 6 )

Date of Publication:

Nov 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.