By Topic

Entangling dipole-dipole interactions for quantum logic in optical lattices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
G. K. Brennen ; Dept. of Phys. & Astron., New Mexico Univ., Albuquerque, NM, USA ; I. H. Deutsch

Summary form only given. Controlled interactions between pairs of neutral atoms in optical lattices allow for the creation of highly entangled multiparticle states and the implementation of quantum logic gates. Such systems benefit from suppressed decoherence because neutrals couple weakly to the environment and from the possibility of processing with the massively parallel quantum registers in the atomic ensemble. The main source of decoherence is spontaneous emission which can be made negligible if the two atom interactions are performed fast compared to the scattering rate. We have shown the possibility of using induced electric dipole-dipole interactions between pairs of atoms to perform the two qubit gates /spl radic/(SWAP) and CPHASE with high fidelity.

Published in:

Quantum Electronics and Laser Science Conference, 2000. (QELS 2000). Technical Digest

Date of Conference:

12-12 May 2000