By Topic

Ultra-wideband source and antenna research

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
W. D. Prather ; High Power Microwave Div., Air Force Res. Lab., Kirtland AFB, NM, USA ; C. E. Baum ; J. M. Lehr ; J. P. O'Loughlin
more authors

Ultra-wideband (UWB) microwave sources and antennas are of interest for a variety of applications, such as transient radar, mine detection, and unexploded ordnance (UXO) location and identification. Much of the current research is being performed at the Air Force Research Laboratory (AFRL) at Kirtland AFB, NM. The approach to high power source development has included high pressure gas switching, oil switching, and solid-state-switched arrays. Recent advances in triggered gas switch technology and solid-state-switched shockline technology have opened up new possibilities for the development of much higher power systems and have thus opened the door to many new applications. The research into UWB transient antennas has also made significant contributions to the development and improvement of wideband continuous wave (CW) antenna designs and has brought new knowledge about the complex behavior of ferrites, dielectrics, and resistive materials in short pulse, very high voltage environments. This has in turn led to advances in the technology of transformers, transmission lines, insulators, and UWB optics. This paper reviews the progress to date along these lines and discusses new areas of research into UWB technology development

Published in:

IEEE Transactions on Plasma Science  (Volume:28 ,  Issue: 5 )