By Topic

Pulsed power experiments in hydrodynamics and material properties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Reinovsky, R.E. ; Los Alamos Nat. Lab., NM, USA

In the last five years, a new application of high-performance pulsed power techniques within the Stockpile Stewardship Program has joined the traditional family of radiation source applications. This new application uses low-impedance, high-current drivers to produce high-energy density environments in materials for the study of material properties, instabilities, and hydrodynamics in complex geometries. The principle tool for producing high-energy density environments is the high-precision, magnetically imploded, near solid density liner. The most attractive pulsed power system for driving such experiments is an ultrahigh current, low-impedance, microsecond rise-time source that is economical both to build and to operate. In this paper, the authors review basic scaling arguments that set the scope of high-energy density environments made available by pulsed power-driven liners. They provide a summary of some investigations into the physics limiting the performance of near-solid metal liners under magnetic drive. They present a few examples of hydrodynamic experiments enabled by liners drive and note some demonstration experiments already performed with interim systems. Finally, they overview the pulsed power techniques under development at Los Alamos for high-energy density experiments

Published in:

Plasma Science, IEEE Transactions on  (Volume:28 ,  Issue: 5 )