Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Design techniques for high-frequency CMOS switched-capacitor filters using non-op-amp-based unity-gain amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chung-Yu Wu, Ph.D. ; Dept. of Electron. Eng., Nat. Chiao-Tung Univ., Hsin-chu, Taiwan ; Ping-Hsing Lu ; Tsai, M.-K.

A fully differential non-op-amp-based unity-gain amplifier (UGA) is proposed, whose 3-dB frequency can be as high as 250 MHz in 3.5-μm p-well CMOS technology. The purpose is to develop a new design concept for high-frequency switched-capacitor (SC) filters which uses balanced non-op-amp type UGAs with tunable gain to replace conventional op-amp-based unity-gain buffers (UGBs). The proposed UGA has a normal gain of unit, but it has a greater bandwidth, better setting behavior, smaller chip area, and less transistors than op-amp-based UGB. The new UGA also has a fully differential balanced configuration. The balanced configuration and proper predistortion by CAD tools can reduce the error due to linear parasitic capacitances. Experimental results prove the capability of the proposed structures in the realization of high-frequency SC filters over the megahertz range

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:26 ,  Issue: 10 )