Cart (Loading....) | Create Account
Close category search window
 

A unified model for single/multifinger HBTs including self-heating effects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Garlapati, Akhil ; Dept. of Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA ; Prasad, S.

This paper presents a unified analytical large-signal model that includes self-heating effects. The model is applied to a single-finger AlGaAs/GaAs heterojunction bipolar transistor (HBT) and a multifinger InGaAs/GaAs HBT. The self-heating effect in the HBT is simulated as a feedback from the collector current to the base-emitter voltage. The main advantage of the circuit presented here is that additional analysis of coupling between electrical and thermal circuits is not required, as is the case with the existing models. The small-signal HBT model is implemented based on the S-parameters at multiple frequencies measured at multiple bias points. This model is verified by comparing the measured and simulated S-parameters. The large-signal model is based on the forward Gummel plot and is built over the small-signal model. This model is verified by comparing the simulated and measured dc I-V characteristics

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:49 ,  Issue: 1 )

Date of Publication:

Jan 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.