By Topic

Unsupervised multiresolution segmentation for images with low depth of field

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wang, J.Z. ; Sch. of Inf. Sci. & Technol., Pennsylvania State Univ., University Park, PA, USA ; Jia Li ; Gray, R.M. ; Wiederhold, G.

Unsupervised segmentation of images with low depth of field (DOF) is highly useful in various applications. This paper describes a novel multiresolution image segmentation algorithm for low DOF images. The algorithm is designed to separate a sharply focused object-of-interest from other foreground or background objects. The algorithm is fully automatic in that all parameters are image independent. A multi-scale approach based on high frequency wavelet coefficients and their statistics is used to perform context-dependent classification of individual blocks of the image. Unlike other edge-based approaches, our algorithm does not rely on the process of connecting object boundaries. The algorithm has achieved high accuracy when tested on more than 100 low DOF images, many with inhomogeneous foreground or background distractions. Compared with he state of the art algorithms, this new algorithm provides better accuracy at higher speed

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:23 ,  Issue: 1 )