By Topic

Resolving motion correspondence for densely moving points

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Veenman, C.J. ; Dept. of Inf. Technol. & Syst., Delft Univ. of Technol., Netherlands ; Reinders, M.J.T. ; Backer, E.

Studies the motion correspondence problem for which a diversity of qualitative and statistical solutions exist. We concentrate on qualitative modeling, especially in situations where assignment conflicts arise either because multiple features compete for one detected point or because multiple detected points fit a single feature point. We leave out the possibility of point track initiation and termination because that principally conflicts with allowing for temporary point occlusion. We introduce individual, combined, and global motion models and fit existing qualitative solutions in this framework. Additionally, we present a tracking algorithm that satisfies these-possibly constrained-models in a greedy matching sense, including an effective way to handle detection errors and occlusion. The performance evaluation shows that the proposed algorithm outperforms existing greedy matching algorithms. Finally, we describe an extension to the tracker that enables automatic initialization of the point tracks. Several experiments show that the extended algorithm is efficient, hardly sensitive to its few parameters, and qualitatively better than other algorithms, including the presumed optimal statistical multiple hypothesis tracker

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:23 ,  Issue: 1 )