By Topic

A unified formulation of honeycomb and diamond networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Parhami, B. ; Dept. of Electr. & Comput. Eng., California Univ., Santa Barbara, CA, USA ; Ding-Ming Kwai

Honeycomb and diamond networks have been proposed as alternatives to mesh and torus architectures for parallel processing. When wraparound links are included in honeycomb and diamond networks, the resulting structures can be viewed as having been derived via a systematic pruning scheme applied to the links of 2D and 3D tori, respectively. The removal of links, which is performed along a diagonal pruning direction, preserves the network's node-symmetry and diameter, while reducing its implementation complexity and VLSI layout area. In this paper, we prove that honeycomb and diamond networks are special subgraphs of complete 2D and 3D tori, respectively, and show this viewpoint to hold important implications for their physical layouts and routing schemes. Because pruning reduces the node degree without increasing the network diameter, the pruned networks have an advantage when the degree-diameter product is used as a figure of merit. Additionally, if the reduced node degree is used as an opportunity to increase the link bandwidths to equalize the costs of pruned and unpruned networks, a gain in communication performance may result

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:12 ,  Issue: 1 )