Cart (Loading....) | Create Account
Close category search window
 

Integral equation solution of Maxwell's equations from zero frequency to microwave frequencies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jun-Sheng Zhao ; Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL, USA ; Weng Cho Chew

We develop a new method to precondition the matrix equation resulting from applying the method of moments (MoM) to the electric field integral equation (EFIE). This preconditioning method is based on first applying the loop-tree or loop-star decomposition of the currents to arrive at a Helmholtz decomposition of the unknown currents. However, the MoM matrix thus obtained still cannot be solved efficiently by iterative solvers due to the large number of iterations required. We propose a permutation of the loop-tree or loop-star currents by a connection matrix, to arrive at a current basis that yields a MoM matrix that can be solved efficiently by iterative solvers. Consequently, dramatic reduction in iteration count has been observed. The various steps can be regarded as a rearrangement of the basis functions to arrive at the MoM matrix. Therefore, they are related to the original MoM matrix by matrix transformation, where the transformation requires the inverse of the connection matrix. We have also developed a fast method to invert the connection matrix so that the complexity of the preconditioning procedure is of O(N) and, hence, can be used in fast solvers such as the low-frequency multilevel fast multipole algorithm (LP-MLFMA). This procedure also makes viable the use of fast solvers such as MLFMA to seek the iterative solutions of Maxwell's equations from zero frequency to microwave frequencies

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:48 ,  Issue: 10 )

Date of Publication:

Oct 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.