By Topic

Analysis of transient scattering from composite arbitrarily shaped complex structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sarkar, Tapan Kumar ; Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., NY, USA ; Wonwoo Lee ; Rao, S.M.

A time-domain surface integral equation approach based on the electric field formulation is utilized to calculate the transient scattering from both conducting and dielectric bodies consisting of arbitrarily shaped complex structures. The solution method is based on the method of moments (MoM) and involves the modeling of an arbitrarily shaped structure in conjunction with the triangular patch basis functions. An implicit method is described to solve the coupled integral equations derived utilizing the equivalence principle directly in the time domain. The usual late-time instabilities associated with the time-domain integral equations are avoided by using an implicit scheme. Detailed mathematical steps are included along with representative numerical results

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:48 ,  Issue: 10 )