By Topic

Nonradiating and minimum energy sources and their fields: generalized source inversion theory and applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
E. A. Marengo ; Dept. of Electr. & Comput. Eng., Arizona Univ., Tucson, AZ, USA ; R. W. Ziolkowski

A new general framework for characterizing scalar and electromagnetic (EM) nonradiating (NR) and minimum energy (ME) sources and their fields is developed that is of interest for both radiation and source reconstruction problems. NR sources are characterized in connection with the concept of reciprocity as nonreceptors. Localized ME sources are shown to be free fields truncated within the source's support. A new source analysis tool is developed that is based on the decomposition of a source and its field into their radiating and NR components. The individual radiating and reactive energy roles of the radiating and NR parts of a source are characterized. The general theory is illustrated with a time-harmonic EM example

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:48 ,  Issue: 10 )