Cart (Loading....) | Create Account
Close category search window

Scattering of electromagnetic waves by a perfectly conducting cylinder with a thin lossy magnetic coating

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Strifors, H.C. ; Defense Res. Establ., Stockholm, Sweden ; Gaunaurd, G.C.

We study the scattering interaction of electromagnetic (EM) waves with an infinite cylinder coated with a lossy dielectric material with frequency-dependent material properties. These properties are hypothetical, yet representative of a wide class of available materials. The monostatic and bistatic scattered widths (SW) are evaluated for the TM or TE polarization cases. These calculations require the use of algorithms to evaluate Bessel-Hankel functions of complex arguments. These algorithms are based on a continued fraction approach, which ensures stability of the recursion relations. The bistatic plots of the TM and TE scattering widths for the coated body are displayed in a convenient color-graded scale. The reductions in the scattering widths produced by this type of coating are determined in selected frequency bands and angular sectors, in both polarization cases. It is quantitatively shown how curvature and polarization shift the effectiveness band of the coating. The determined regions in which the SW are minimally affected are the most suitable for target identification purposes

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:48 ,  Issue: 10 )

Date of Publication:

Oct 2000

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.