By Topic

Least mean M-estimate algorithms for robust adaptive filtering in impulse noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yuexian Zou ; Dept. of Electr. & Electron. Eng., Hong Kong Univ., China ; Shing-Chow Chan ; Tung-Sang Ng

This paper proposes two gradient-based adaptive algorithms, called the least mean M estimate and the transform domain least mean M-estimate (TLMM) algorithms, for robust adaptive filtering in impulse noise. A robust M-estimator is used as the objective function to suppress the adverse effects of impulse noise on the filter weights. They have a computational complexity of order O(N) and can be viewed, respectively, as the generalization of the least mean square and the transform-domain least mean square algorithms. A robust method fur estimating the required thresholds in the M-estimator is also given. Simulation results show that the TLMM algorithm, in particular, is more robust and effective than other commonly used algorithms in suppressing the adverse effects of the impulses

Published in:

Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on  (Volume:47 ,  Issue: 12 )