By Topic

Hierarchical pipelining and folding of QRD-RLS adaptive filters and its application to digital beamforming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lijun Gao ; Dept. of Electr. & Comput. Eng., Minnesota Univ., Minneapolis, MN, USA ; K. K. Parhi

This paper presents a novel hierarchical approach for pipelining and folding the large CORDIC-based systolic array of a QR decomposition-based recursive least square algorithm (QRD-RLS) adaptive filter to a small fixed size array. With the annihilation-reordering look-ahead transformation, the iteration bound of a QRD-RLS adaptive filter can be reduced linearly with respect to the look-ahead factor. This paper presents, for the first time, how to pipeline and fold such a look-ahead transformed QRD-RLS adaptive filter. Unlike the previously published algorithms, this approach has low complexity and can result in a physical array of any size. In addition, a mathematical model for evaluating these transformations is developed. Using this model, it is shown how a combination of look-ahead, pipelining, and folding transformations can lead to a large increase in throughput and large reduction in area or power consumption. Therefore, the proposed approach is of great significance for application-specific IC chip design, high-level hardware synthesis, and special-purpose processor design. The optimally designed QRD-RLS adaptive filters can be used for adaptive digital beamforming applications, which play an important role in radar, sonar, and mobile/wireless communication systems

Published in:

IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing  (Volume:47 ,  Issue: 12 )