By Topic

Novel closed-form Green's function in shielded planar layered media

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cangellaris, A.C. ; Dept. of Electr. Eng. & Comput. Sci., Illinois Univ., Chicago, IL, USA ; Okhmatovski, V.I.

A new method is proposed for the construction of closed-form Green's function in planar, stratified media between two conducting planes. The new approach does not require the a priori extraction of the guided-wave poles and the quasi-static part from the Green function spectrum. The proposed methodology can be easily applied to arbitrary planar media without any restriction on the number of layers and their thickness. Based on the discrete solution of one-dimensional ordinary differential equations for the spectral-domain expressions of the appropriate vector potential components, the proposed method leads to the simultaneous extraction of all Green's function values associated with a given set of source and observation points. Krylov subspace model order reduction is used to express the generated closed-form Green's function representation in terms of a finite sum involving a small number of Hankel functions. The validity of the proposed methodology and the accuracy of the generated closed-form Green's functions are demonstrated through a series of numerical experiments involving both vertical and horizontal dipoles

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:48 ,  Issue: 12 )