By Topic

Layered quality adaptation for Internet video streaming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rejaie, R. ; AT&T Labs.-Res., Menlo Park, CA, USA ; Handley, M. ; Estrin, D.

Streaming audio and video applications are becoming increasingly popular on the Internet, and the lack of effective congestion control in such applications is now a cause for significant concern. The problem is one of adapting the compression without requiring video servers to reencode the data, and fitting the resulting stream into the rapidly varying available bandwidth. At the same time, rapid fluctuations in quality will be disturbing to the users and should be avoided. We present a mechanism for using layered video in the context of unicast congestion control. This quality adaptation mechanism adds and drops layers of the video stream to perform long-term coarse-grain adaptation, while using a TCP-friendly congestion control mechanism to react to congestion on very short timescales. The mismatches between the two timescales are absorbed using buffering at the receiver. We present an efficient scheme for the distribution of available bandwidth among the active layers. Our scheme allows the server to trade short-term improvement for long-term smoothing of quality. We discuss the issues involved in implementing and tuning such a mechanism, and present our simulation results.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:18 ,  Issue: 12 )