By Topic

Nonlinear system stabilization via hierarchical switching control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Leonessa, A. ; Dept. of Ocean Eng., Florida Atlantic Univ.-Sea Tech., Dania Beach, FL, USA ; Haddad, M.M. ; Chellaboina, V.

A nonlinear control system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear control strategy is developed that stabilizes a given nonlinear system by stabilizing a collection of nonlinear controlled subsystems. The switching nonlinear controller architecture is designed based on a generalized lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized system equilibria. The proposed framework provides a rigorous alternative to designing gain-scheduled feedback controllers and guarantees local and global closed-loop system stability for general nonlinear systems

Published in:

Automatic Control, IEEE Transactions on  (Volume:46 ,  Issue: 1 )