By Topic

Impact of variable atmospheric water vapor content on AVHRR data corrections over land

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
J. Cihlar ; Canada Centre for Remote Sensing, Ottawa, Ont., Canada ; I. Tcherednichenko ; R. Latifovic ; Z. Li
more authors

This paper explores the impact of the integrated water vapor content (IWV) in the atmospheric column on the corrections of optical satellite data over land. First, simulation runs were used to quantify the trends in red and near infrared parts of the electromagnetic spectrum. Second, advanced very high resolution radiometer (AVHRR) measurements obtained over Canada during the 1996 growing season, together with reanalyzed IWV content data, were employed to determine the actual impact of constant IWV values. Third, various options in characterizing IWV for atmospheric corrections of AVHRR composites were examined. It was found that (1) as expected, IWV affects near-infrared radiation substantially more than red, although the latter is also altered; (2) that additional, subtle interactions take place between IWV, radiance levels, and viewing geometry that influence the retrieved surface reflectance; (3) that spatial and temporal variation in IWV caused changes in the normalized difference vegetation index up to 7.5% in relative terms during the peak green period; and (4) that IWV varies so substantially that pixel and date-specific values need to be used for the atmospheric correction of AVHRR data. At present, subdaily gridded IWV data sets from atmospheric data reanalysis projects are the only candidate source for such purpose

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:39 ,  Issue: 1 )