Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at We apologize for any inconvenience.
By Topic

Constrained maximum-likelihood detection in CDMA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Peng Hui Tan ; Dept. of Comput. Eng., Chalmers Univ. of Technol., Goteborg, Sweden ; Rasmussen, L.K. ; Lim, T.J.

The detection strategy usually denoted optimal multiuser detection is equivalent to the solution of a (0, 1)-constrained maximum-likelihood (ML) problem, a problem which is known to be NP-hard. In contrast, the unconstrained ML problem can be solved quite easily and is known as the decorrelating detector. In this paper, we consider the constrained ML problem where the solution vector is restricted to lie within a closed convex set (CCS). Such a design criterion leads to detector structures which are ML under the constraint assumption. A close relationship between a sphere-constrained ML detector and the well-known minimum mean square error detector is found and verified. An iterative algorithm for solving a CCS constraint problem is derived based on results in linear variational inequality theory. Special cases of this algorithm, subject to a box-constraint, are found to correspond to known, nonlinear successive and parallel interference cancellation structures, using a clipped soft decision for making tentative decisions, while a weighted linear parallel interference canceler with signal-dependent weights arises from the sphere constraint. Convergence issues are investigated and an efficient implementation is suggested. The bit-error rate performance is studied via computer simulations and the expected performance improvements over unconstrained ML are verified

Published in:

Communications, IEEE Transactions on  (Volume:49 ,  Issue: 1 )