By Topic

Block FIR decision-feedback equalizers for filterbank precoded transmissions with blind channel estimation capabilities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Stamoulis, A. ; Dept. of Electr. & Comput. Eng., Minnesota Univ., Minneapolis, MN, USA ; Giannakis, G.B. ; Scaglione, A.

In block transmission systems, transmitter-induced redundancy using finite-impulse response (FIR) filterbanks can be used to suppress intersymbol interference and equalize FIR channels irrespective of channel zeros. At the receiver end, linear or decision-feedback (DF) FIR filterbanks can be applied to recover the transmitted data. Closed-form expressions are derived for the FIR linear or DF filterbank receivers corresponding to varying amounts of transmission redundancy. Our framework encompasses existing block transmission schemes and offers low implementation-cost equalization techniques both when interblock interference is eliminated, and when IBI is present as, e.g., in orthogonal frequency-division multiplexing with insufficient cyclic prefix. By applying blind channel estimation methods, our filterbank transmitters-receivers (transceivers) dispense with bandwidth consuming training sequences. Extensive simulations illustrate the merits of our designs

Published in:

Communications, IEEE Transactions on  (Volume:49 ,  Issue: 1 )