By Topic

A probabilistic approach to aircraft conflict detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Prandini, M. ; Dept. of Electron. for Autom., Brescia Univ., Italy ; Jianghai Hu ; Lygeros, J. ; Sastry, S.

Conflict detection and resolution schemes operating at the mid-range and short-range level of the air traffic management process are discussed. Probabilistic models for predicting the aircraft position in the near-term and mid-term future are developed. Based on the mid-term prediction model, the maximum instantaneous probability of conflict is proposed as a criticality measure for two aircraft encounters. Randomized algorithms are introduced to efficiently estimate this measure of criticality and provide quantitative bounds on the level of approximation introduced. For short-term detection, approximate closed-form analytical expressions for the probability of conflict are obtained, using the short-term prediction model. Based on these expressions, an algorithm for decentralized conflict detection and resolution that generalizes potential fields methods for path planning to a probabilistic dynamic environment is proposed. The algorithms are validated using Monte Carlo simulations

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:1 ,  Issue: 4 )