By Topic

The use of sliding spectral windows for parameter estimation in power system disturbance monitoring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
O'Shea, P. ; Dept. of Commun. & Electr. Eng., R. Melbourne Inst. of Technol., Vic., Australia

The monitoring of power systems after faults or disturbances is an important problem. These disturbances generally give rise to oscillating modal components, which in a worst case scenario, can be exponentially growing sinusoids. The latter, if not detected and damped out, can pose a serious threat to system reliability. It is thus necessary to monitor whether any of these modes do exhibit exponential growth (rather than the more acceptable scenario of exponential decay). There are currently a number of approaches to predicting/monitoring disturbances in power system networks. One approach is eigenanalysis, based on a linearized modeling of the power system. A more direct approach is spectral analysis of the signals recorded immediately after a fault or disruption. For this latter approach both Prony's method and conventional Fourier techniques have been used. This paper presents a Fourier based algorithm for estimating the parameters of the oscillating modes which arise after a system disruption. The algorithm is based on the sliding window method discussed by K. Poon et al. (see ibid., p.1573-9, 1988) but has a number of innovations

Published in:

Power Systems, IEEE Transactions on  (Volume:15 ,  Issue: 4 )