By Topic

Optimal design of fault tolerant sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
G. Hoblos ; Lab d'Autom. et d'Inf. Ind., Lille I Univ., Villeneuve d'Ascq, France ; M. Staroswiecki ; A. Aitouche

The selection of measurements is one of the most important problems in the design of process instrumentation. This paper deals with the design of sensor networks such that the observability of the variables, which are necessary for the process control, remains satisfied in the presence of sensor failures. Pseudo-minimal and minimal sensor sets are organized into an oriented graph which contains all the possible reconfiguration paths for which those variables remain observable. A bottom-up analysis of this graph allows one to compute reliability functions which evaluate the robustness of the observability property with respect to sensor failures. The design of optimal sensor networks thus resumes to finding pseudo-minimal sensor sets such that the mean time before losing the observability property is larger than a pre-defined value

Published in:

Control Applications, 2000. Proceedings of the 2000 IEEE International Conference on

Date of Conference:

2000