Cart (Loading....) | Create Account
Close category search window
 

Simulated annealing-based algorithms for the studies of the thermoelastic scaling behavior

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wong, Y.C. ; Dept. of Comput. Sci. & Eng., Chinese Univ. of Hong Kong, Shatin, China ; Leung, K.S. ; Wong, C.K.

Simulated annealing is a robust and easy-to-implement algorithm for material simulation. However, it consumes a huge amount of computational time, especially on the studies of percolation networks. To reduce the running time, we parallelize the simulated annealing algorithm in our studies of the thermoelastic scaling behavior of percolation networks. The critical properties of the thermoelastic moduli of percolation networks near the threshold pc are investigated by constructing a square percolation network. The properties are tested by simulations of a series of two-dimensional (2-D) percolation networks near pc. The simulations are performed using a novel parallelizing scheme on the simulated annealing algorithm. To further accelerate the computational speed, we also propose a new conjectural method to generate better initial configurations, which speeds up the simulation significantly. Preliminary simulation results show surprisingly that the percolating phenomenon of thermal expansion does exist under certain conditions. The behavior seems to be governed by the elastic properties of a percolation network

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:30 ,  Issue: 4 )

Date of Publication:

Nov 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.