Cart (Loading....) | Create Account
Close category search window
 

A hybrid learning scheme combining EM and MASMOD algorithms for fuzzy local linearization modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qiang Gan ; Dept. of Electron. & Comput. Sci., Southampton Univ., UK ; Harris, C.J.

Fuzzy local linearization (FLL) is a useful divide-and-conquer method for coping with complex problems such as modeling unknown nonlinear systems from data for state estimation and control. Based on a probabilistic interpretation of FLL, the paper proposes a hybrid learning scheme for FLL modeling, which uses a modified adaptive spline modeling (MASMOD) algorithm to construct the antecedent parts (membership functions) in the FLL model, and an expectation-maximization (EM) algorithm to parameterize the consequent parts (local linear models). The hybrid method not only has an approximation ability as good as most neuro-fuzzy network models, but also produces a parsimonious network structure (gain from MASMOD) and provides covariance information about the model error (gain from EM) which is valuable in applications such as state estimation and control. Numerical examples on nonlinear time-series analysis and nonlinear trajectory estimation using FLL models are presented to validate the derived algorithm

Published in:

Neural Networks, IEEE Transactions on  (Volume:12 ,  Issue: 1 )

Date of Publication:

Jan 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.