By Topic

Approximation of nonlinear systems with radial basis function neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Schilling, R.J. ; Dept. of Electr. & Comput. Eng., Clarkson Univ., Potsdam, NY, USA ; Carroll, J.J., Jr. ; Al-Ajlouni, A.F.

A technique for approximating a continuous function of n variables with a radial basis function (RBF) neural network is presented. The method uses an n-dimensional raised-cosine type of RBF that is smooth, yet has compact support. The RBF network coefficients are low-order polynomial functions of the input. A simple computational procedure is presented which significantly reduces the network training and evaluation time. Storage space is also reduced by allowing for a nonuniform grid of points about which the RBFs are centered. The network output is shown to be continuous and have a continuous first derivative. When the network is used to approximate a nonlinear dynamic system, the resulting system is bounded-input bounded-output stable. For the special case of a linear system, the RBF network representation is exact on the domain over which it is defined, and it is optimal in terms of the number of distinct storage parameters required. Several examples are presented which illustrate the effectiveness of this technique

Published in:

Neural Networks, IEEE Transactions on  (Volume:12 ,  Issue: 1 )