By Topic

A six-wafer combustion system for a silicon micro gas turbine engine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Mehra, Amit ; Dept. of Aeronaut. & Astronaut., MIT, Cambridge, MA, USA ; Zhang, Xin ; Ayon, Arturo A. ; Waitz, Ian A.
more authors

As part of a program to develop a micro gas turbine engine capable of producing 10-50 W of electrical power in a package less than one cubic centimeter in volume, we present the design, fabrication, packaging, and experimental test results for the 6-wafer combustion system for a silicon microengine. Comprising the main nonrotating functional components of the engine, the device described measures 2.1 cm/spl times/2.1 cm/spl times/0.38 cm and is largely fabricated by deep reactive ion etching through a total thickness of 3800 /spl mu/m. Complete with a set of fuel plenums, pressure ports, fuel injectors, igniters, fluidic interconnects, and compressor and turbine static airfoils, this structure is the first demonstration of the complete hot flow path of a multilevel micro gas turbine engine. The 0.195 cm/sup 3/ combustion chamber is shown to sustain a stable hydrogen flame over a range of operating mass flows and fuel-air mixture ratios and to produce exit gas temperatures in excess of 1600 K. It also serves as the first experimental demonstration of stable hydrocarbon microcombustion within the structural constraints of silicon. Combined with longevity tests at elevated temperatures for tens of hours, these results demonstrate the viability of a silicon-based combustion system for micro heat engine applications.

Published in:

Microelectromechanical Systems, Journal of  (Volume:9 ,  Issue: 4 )